

./HEAD

ref: refs/heads/master

./config

[core]
	repositoryformatversion = 0
	filemode = true
	bare = true
[remote "origin"]
	fetch = +refs/*:refs/*
	mirror = true
	url = git://github.com/webOS-ports/org.webosports.app.pdf

./description

Unnamed repository; edit this file 'description' to name the repository.

./hooks/applypatch-msg.sample

#!/bin/sh
#
An example hook script to check the commit log message taken by
applypatch from an e-mail message.
#
The hook should exit with non-zero status after issuing an
appropriate message if it wants to stop the commit. The hook is
allowed to edit the commit message file.
#
To enable this hook, rename this file to "applypatch-msg".

. git-sh-setup
test -x "$GIT_DIR/hooks/commit-msg" &&
	exec "$GIT_DIR/hooks/commit-msg" ${1+"$@"}
:

./hooks/commit-msg.sample

#!/bin/sh
#
An example hook script to check the commit log message.
Called by "git commit" with one argument, the name of the file
that has the commit message. The hook should exit with non-zero
status after issuing an appropriate message if it wants to stop the
commit. The hook is allowed to edit the commit message file.
#
To enable this hook, rename this file to "commit-msg".

Uncomment the below to add a Signed-off-by line to the message.
Doing this in a hook is a bad idea in general, but the prepare-commit-msg
hook is more suited to it.
#
SOB=$(git var GIT_AUTHOR_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p')
grep -qs "^$SOB" "$1" || echo "$SOB" >> "$1"

This example catches duplicate Signed-off-by lines.

test "" = "$(grep '^Signed-off-by: ' "$1" |
	 sort | uniq -c | sed -e '/^[]*1[]/d')" || {
	echo >&2 Duplicate Signed-off-by lines.
	exit 1
}

./hooks/post-update.sample

#!/bin/sh
#
An example hook script to prepare a packed repository for use over
dumb transports.
#
To enable this hook, rename this file to "post-update".

exec git update-server-info

./hooks/pre-applypatch.sample

#!/bin/sh
#
An example hook script to verify what is about to be committed
by applypatch from an e-mail message.
#
The hook should exit with non-zero status after issuing an
appropriate message if it wants to stop the commit.
#
To enable this hook, rename this file to "pre-applypatch".

. git-sh-setup
test -x "$GIT_DIR/hooks/pre-commit" &&
	exec "$GIT_DIR/hooks/pre-commit" ${1+"$@"}
:

./hooks/pre-commit.sample

#!/bin/sh
#
An example hook script to verify what is about to be committed.
Called by "git commit" with no arguments. The hook should
exit with non-zero status after issuing an appropriate message if
it wants to stop the commit.
#
To enable this hook, rename this file to "pre-commit".

if git rev-parse --verify HEAD >/dev/null 2>&1
then
	against=HEAD
else
	# Initial commit: diff against an empty tree object
	against=4b825dc642cb6eb9a060e54bf8d69288fbee4904
fi

If you want to allow non-ascii filenames set this variable to true.
allownonascii=$(git config hooks.allownonascii)

Redirect output to stderr.
exec 1>&2

Cross platform projects tend to avoid non-ascii filenames; prevent
them from being added to the repository. We exploit the fact that the
printable range starts at the space character and ends with tilde.
if ["$allownonascii" != "true"] &&
	# Note that the use of brackets around a tr range is ok here, (it's
	# even required, for portability to Solaris 10's /usr/bin/tr), since
	# the square bracket bytes happen to fall in the designated range.
	test $(git diff --cached --name-only --diff-filter=A -z $against |
	 LC_ALL=C tr -d '[-~]\0' | wc -c) != 0
then
	echo "Error: Attempt to add a non-ascii file name."
	echo
	echo "This can cause problems if you want to work"
	echo "with people on other platforms."
	echo
	echo "To be portable it is advisable to rename the file ..."
	echo
	echo "If you know what you are doing you can disable this"
	echo "check using:"
	echo
	echo " git config hooks.allownonascii true"
	echo
	exit 1
fi

If there are whitespace errors, print the offending file names and fail.
exec git diff-index --check --cached $against --

./hooks/pre-rebase.sample

#!/bin/sh
#
Copyright (c) 2006, 2008 Junio C Hamano
#
The "pre-rebase" hook is run just before "git rebase" starts doing
its job, and can prevent the command from running by exiting with
non-zero status.
#
The hook is called with the following parameters:
#
$1 -- the upstream the series was forked from.
$2 -- the branch being rebased (or empty when rebasing the current branch).
#
This sample shows how to prevent topic branches that are already
merged to 'next' branch from getting rebased, because allowing it
would result in rebasing already published history.

publish=next
basebranch="$1"
if test "$#" = 2
then
	topic="refs/heads/$2"
else
	topic=`git symbolic-ref HEAD` ||
	exit 0 ;# we do not interrupt rebasing detached HEAD
fi

case "$topic" in
refs/heads/??/*)
	;;
*)
	exit 0 ;# we do not interrupt others.
	;;
esac

Now we are dealing with a topic branch being rebased
on top of master. Is it OK to rebase it?

Does the topic really exist?
git show-ref -q "$topic" || {
	echo >&2 "No such branch $topic"
	exit 1
}

Is topic fully merged to master?
not_in_master=`git rev-list --pretty=oneline ^master "$topic"`
if test -z "$not_in_master"
then
	echo >&2 "$topic is fully merged to master; better remove it."
	exit 1 ;# we could allow it, but there is no point.
fi

Is topic ever merged to next? If so you should not be rebasing it.
only_next_1=`git rev-list ^master "^$topic" ${publish} | sort`
only_next_2=`git rev-list ^master ${publish} | sort`
if test "$only_next_1" = "$only_next_2"
then
	not_in_topic=`git rev-list "^$topic" master`
	if test -z "$not_in_topic"
	then
		echo >&2 "$topic is already up-to-date with master"
		exit 1 ;# we could allow it, but there is no point.
	else
		exit 0
	fi
else
	not_in_next=`git rev-list --pretty=oneline ^${publish} "$topic"`
	/usr/bin/perl -e '
		my $topic = $ARGV[0];
		my $msg = "* $topic has commits already merged to public branch:\n";
		my (%not_in_next) = map {
			/^([0-9a-f]+) /;
			($1 => 1);
		} split(/\n/, $ARGV[1]);
		for my $elem (map {
				/^([0-9a-f]+) (.*)$/;
				[$1 => $2];
			} split(/\n/, $ARGV[2])) {
			if (!exists $not_in_next{$elem->[0]}) {
				if ($msg) {
					print STDERR $msg;
					undef $msg;
				}
				print STDERR " $elem->[1]\n";
			}
		}
	' "$topic" "$not_in_next" "$not_in_master"
	exit 1
fi

<<\DOC_END

This sample hook safeguards topic branches that have been
published from being rewound.

The workflow assumed here is:

 * Once a topic branch forks from "master", "master" is never
 merged into it again (either directly or indirectly).

 * Once a topic branch is fully cooked and merged into "master",
 it is deleted. If you need to build on top of it to correct
 earlier mistakes, a new topic branch is created by forking at
 the tip of the "master". This is not strictly necessary, but
 it makes it easier to keep your history simple.

 * Whenever you need to test or publish your changes to topic
 branches, merge them into "next" branch.

The script, being an example, hardcodes the publish branch name
to be "next", but it is trivial to make it configurable via
$GIT_DIR/config mechanism.

With this workflow, you would want to know:

(1) ... if a topic branch has ever been merged to "next". Young
 topic branches can have stupid mistakes you would rather
 clean up before publishing, and things that have not been
 merged into other branches can be easily rebased without
 affecting other people. But once it is published, you would
 not want to rewind it.

(2) ... if a topic branch has been fully merged to "master".
 Then you can delete it. More importantly, you should not
 build on top of it -- other people may already want to
 change things related to the topic as patches against your
 "master", so if you need further changes, it is better to
 fork the topic (perhaps with the same name) afresh from the
 tip of "master".

Let's look at this example:

		 o---o---o---o---o---o---o---o---o---o "next"
		 / / / /
		 / a---a---b A / /
		/ / / /
	 / / c---c---c---c B /
	 / / / \ /
	 / / / b---b C \ /
	 / / / / \ /
 ---o---o---o---o---o---o---o---o---o---o---o "master"

A, B and C are topic branches.

 * A has one fix since it was merged up to "next".

 * B has finished. It has been fully merged up to "master" and "next",
 and is ready to be deleted.

 * C has not merged to "next" at all.

We would want to allow C to be rebased, refuse A, and encourage
B to be deleted.

To compute (1):

	git rev-list ^master ^topic next
	git rev-list ^master next

	if these match, topic has not merged in next at all.

To compute (2):

	git rev-list master..topic

	if this is empty, it is fully merged to "master".

DOC_END

./hooks/prepare-commit-msg.sample

#!/bin/sh
#
An example hook script to prepare the commit log message.
Called by "git commit" with the name of the file that has the
commit message, followed by the description of the commit
message's source. The hook's purpose is to edit the commit
message file. If the hook fails with a non-zero status,
the commit is aborted.
#
To enable this hook, rename this file to "prepare-commit-msg".

This hook includes three examples. The first comments out the
"Conflicts:" part of a merge commit.
#
The second includes the output of "git diff --name-status -r"
into the message, just before the "git status" output. It is
commented because it doesn't cope with --amend or with squashed
commits.
#
The third example adds a Signed-off-by line to the message, that can
still be edited. This is rarely a good idea.

case "$2,$3" in
 merge,)
 /usr/bin/perl -i.bak -ne 's/^/# /, s/^# #/#/ if /^Conflicts/ .. /#/; print' "$1" ;;

,|template,)
/usr/bin/perl -i.bak -pe '
print "\n" . `git diff --cached --name-status -r`
#	 if /^#/ && $first++ == 0' "$1" ;;

 *) ;;
esac

SOB=$(git var GIT_AUTHOR_IDENT | sed -n 's/^\(.*>\).*$/Signed-off-by: \1/p')
grep -qs "^$SOB" "$1" || echo "$SOB" >> "$1"

./hooks/update.sample

#!/bin/sh
#
An example hook script to blocks unannotated tags from entering.
Called by "git receive-pack" with arguments: refname sha1-old sha1-new
#
To enable this hook, rename this file to "update".
#
Config

hooks.allowunannotated
This boolean sets whether unannotated tags will be allowed into the
repository. By default they won't be.
hooks.allowdeletetag
This boolean sets whether deleting tags will be allowed in the
repository. By default they won't be.
hooks.allowmodifytag
This boolean sets whether a tag may be modified after creation. By default
it won't be.
hooks.allowdeletebranch
This boolean sets whether deleting branches will be allowed in the
repository. By default they won't be.
hooks.denycreatebranch
This boolean sets whether remotely creating branches will be denied
in the repository. By default this is allowed.
#

--- Command line
refname="$1"
oldrev="$2"
newrev="$3"

--- Safety check
if [-z "$GIT_DIR"]; then
	echo "Don't run this script from the command line." >&2
	echo " (if you want, you could supply GIT_DIR then run" >&2
	echo " $0 <ref> <oldrev> <newrev>)" >&2
	exit 1
fi

if [-z "$refname" -o -z "$oldrev" -o -z "$newrev"]; then
	echo "Usage: $0 <ref> <oldrev> <newrev>" >&2
	exit 1
fi

--- Config
allowunannotated=$(git config --bool hooks.allowunannotated)
allowdeletebranch=$(git config --bool hooks.allowdeletebranch)
denycreatebranch=$(git config --bool hooks.denycreatebranch)
allowdeletetag=$(git config --bool hooks.allowdeletetag)
allowmodifytag=$(git config --bool hooks.allowmodifytag)

check for no description
projectdesc=$(sed -e '1q' "$GIT_DIR/description")
case "$projectdesc" in
"Unnamed repository"* | "")
	echo "*** Project description file hasn't been set" >&2
	exit 1
	;;
esac

--- Check types
if $newrev is 0000...0000, it's a commit to delete a ref.
zero="00"
if ["$newrev" = "$zero"]; then
	newrev_type=delete
else
	newrev_type=$(git cat-file -t $newrev)
fi

case "$refname","$newrev_type" in
	refs/tags/*,commit)
		# un-annotated tag
		short_refname=${refname##refs/tags/}
		if ["$allowunannotated" != "true"]; then
			echo "*** The un-annotated tag, $short_refname, is not allowed in this repository" >&2
			echo "*** Use 'git tag [-a | -s]' for tags you want to propagate." >&2
			exit 1
		fi
		;;
	refs/tags/*,delete)
		# delete tag
		if ["$allowdeletetag" != "true"]; then
			echo "*** Deleting a tag is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/tags/*,tag)
		# annotated tag
		if ["$allowmodifytag" != "true"] && git rev-parse $refname > /dev/null 2>&1
		then
			echo "*** Tag '$refname' already exists." >&2
			echo "*** Modifying a tag is not allowed in this repository." >&2
			exit 1
		fi
		;;
	refs/heads/*,commit)
		# branch
		if ["$oldrev" = "$zero" -a "$denycreatebranch" = "true"]; then
			echo "*** Creating a branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/heads/*,delete)
		# delete branch
		if ["$allowdeletebranch" != "true"]; then
			echo "*** Deleting a branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	refs/remotes/*,commit)
		# tracking branch
		;;
	refs/remotes/*,delete)
		# delete tracking branch
		if ["$allowdeletebranch" != "true"]; then
			echo "*** Deleting a tracking branch is not allowed in this repository" >&2
			exit 1
		fi
		;;
	*)
		# Anything else (is there anything else?)
		echo "*** Update hook: unknown type of update to ref $refname of type $newrev_type" >&2
		exit 1
		;;
esac

--- Finished
exit 0

./info/exclude

git ls-files --others --exclude-from=.git/info/exclude
Lines that start with '#' are comments.
For a project mostly in C, the following would be a good set of
exclude patterns (uncomment them if you want to use them):
*.[oa]
*~

./objects/pack/pack-a60d9939bd9abd18ed8e3080ef92e562aa7c98bf.idx

./objects/pack/pack-a60d9939bd9abd18ed8e3080ef92e562aa7c98bf.pack

./objects/pack/pack-a60d9939bd9abd18ed8e3080ef92e562aa7c98bf

./packed-refs

pack-refs with: peeled
0f96fa6672bdafa93c5925432115211ff60e0f5c refs/heads/gh-pages
97eeb9c19ece58a49d8826345c02392728f7d25d refs/heads/master
4ed7763c2ae4f2e71c83582de5654d94a6a61b62 refs/pull/1/head
63f176c0e9d0ec2d6e881a5bd3dce928b33dc0bf refs/pull/2/head
37ae39ea29d8e63986b1bedb7f18067f279904f8 refs/pull/3/head
b24a37960440bc77dd2e537e355c58d87778c1f6 refs/pull/4/head
ba898eba0bcca7074f3ce64552693ac16b93559e refs/pull/5/head
b876d99fb1bb93476a71b75118b63d918eaa03da refs/pull/6/head
56d62570c775c223822bbe07620151f47b22c427 refs/pull/7/head
b2c279f78f08ecdfe42969833cd8d43ed9a77bc6 refs/tags/v1.0

